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Introduction

A fundamental principle in classical mechanics is Hamil-
ton’s principle, which states that the dynamics of the sys-
tem are captured in a single action functional S . However,
for non-conservative physical laws time-symmetry is broken
and Hamilton’s principle is not valid.

Galley [1] developed a variational principle which allows to
capture non-conservative interactions, providing equations
of motion of the system in terms of Euler-Lagrange equa-
tions.
If a symmetry group is acting on the configuration space, the
Euler-Lagrange equations can be reduced to Euler-Poincaré
equations on its Lie algebra.

In order to formulate Galley’s principle in coordinate free
form, and to obtain deeper insight in the underlying geom-
etry, we reformulate the principle in terms of deformations
on a fluid manifold.
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Nonconservative systems arise when only a subset of dy-
namical variables within a conservative system are con-
sidered.

Accessible and inaccessible
degrees of freedom can be,
for example, due to choice,
obervational constraints, or
separation of scales.
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Hamilton’s Principle
states that the dynamics of a physical system are determined by the varia-
tional problem: "Find a path from given intial value to a given final value,
which makes the action S stationary."
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L(q, q̇)dt = 0

The Lagrangian L contains all physical interactions of the
system. Typically, L = T −V , where T is the kinetic and V
the potential energy.

Non-conservative Action Principle
It is well-known that Hamilton’s principle is not applicable in non-conservative settings. By doubling the degrees of freedom,in [1] the system is expressed as a boundary value problem,
leading to a similar action principle.
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∫ t f

ti
L(q1, q̇1)︸ ︷︷ ︸

Lagrangian of q1
integrated forward in time

− L(q2, q̇2)︸ ︷︷ ︸
Lagrangian of q2

integrated backwards in time

+ K(q1,q2, q̇1, q̇2)︸ ︷︷ ︸
term coupling the variables q1,q2

’non-conservative potential’

dt (1)

The action is varied with the conditions that variations vanish at initial time and are equal (but not fixed)
at final time. After the variation, setting q1 = q2 yields the real physical variable.

How does one choose the
coupling term K?
The ’non-conservative potential’ K can
for example be reconstructed from a
known force on the system, or be ob-
tained by integrating out inaccessible
degrees of freedom.

Geometric Viewpoint

We consider fluid dynamics on a differentiable manifold
M , acted on by the group of diffeomorphisms Diff(M ).
The action S depends on paths g ∈ Diff(M )× [ti, t f ]
(which describes the evolution of fluid positions), ġ,∂xg,
and advected quantities φ0 ∈ A (e.g., density, entropy),
where A is a vector space.

Symmetry allows for a reduction of equations of
motion. Let S be right-invariant under deformations
h ∈ Diff(M ), i.e. S(g) = S(g ◦ h)∀h ∈ Diff(M ) for
paths g. This is also referred to as relabeling symmetry.

Let G := Diff(M ), and g its Lie algebra.
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Right-invariance of the Lagrangian L : TG×A→ R al-
lows the definition of a new Lagrangian l : g× A→ R
s.t.,

l(u,v,φ) = L(g, ġ,∂g,φ0) (2)
with u := ġg−1,v := ∂xgg−1,φ = φ0g−1.

Euler-Poincaré equations resulting from varying∫
l(u,v,φ)dt, are given in the Lagrangian (material)

reference frame, in terms of the diffeomorphism and
therefore coordinate-free. The Euler-Lagrange equa-
tions, resulting from varying (1), are given in Eulerian
(spatial) coordinates.

Derivation of the Euler-Poincaré equations

We define l as in (2), and relate k to K analogously.
For field theory we use the Lagragian density ω,
which satisfies

∫
ωdx = w with

w(u1,u2,v1,v2,φ1,φ2) :=l(u1,v1,φ1)− l(u2,v2,φ2)

+ k(u1,u2,v2,v2,φ1,φ2).

The goal is to compute variations δS for a variation
of the deformation g.

Notation
Luv Lie deriavtive of v wrt. u
(·, ·) dual pairing

Step 1: Compute variations δu, δv, δφ, induced
by a variaion δg. We express them depending on
η := δgg−1 and will obtain
δu = η̇+Luη δv = η̇+Lvη δφ =−Lηφ

Step 2: Insert this into the variation of the action

δS =
∫ t f

ti
(δuω|δu)+(δvω|δv) +(δφω|δφ)dt,

Step 3: Formulate the above equation as a pairing
with η. We use (i) Integration by parts on η̇ and
∂η, (ii) (µ|Luη) =−(Luµ|η), and (iii) (δφω�φ|η) :=
−(δφω|Lηφ).

δS =−
∫ t f

ti

( d
dt

δuω+Luδuω+∂δvω+Lvδvω−δφω�φ︸ ︷︷ ︸
=0

∣∣∣η)dt

+

[∫
M

δuωηdx
]t f

ti

+
∫ t f

ti

∫
∂M

δvωη ·ndS(x)dt︸ ︷︷ ︸
=0

Step 4: We choose boundary conditions such that the boundary term
vanishes. Then by the fundamental lemma of variational calculus, we
deduce the integrand is zero, i.e. we obtain the Euler-Poincaré equations

d
dt

δuω+Luδuω+∂xδvω+Lv(δvω) = δΦω�Φ

for the new antisymmetric Lagrangian ω.

Conclusion
We have
• formulated the action functional in terms of deformations of a fluid do-

main, to obtain a coordinate free-version

• used symmetry to define a Lagrangian on the Lie algebra

• found suitable boundary conditions for the doubled system

• obtained Euler-Poincaré equations by varying the new nonconservative
action

Outlook Our goal is to obtain an expression for K by integrating out small
scale fluctuations of the fluid flow. We want to use the Generalised La-
grangian Mean for a model of mean-fluctuation interactions which are com-
patible with the geometry and symmetry.


